


Mobile Application Infrastructure 
Security 

Michalis Kamprianis 
MBA, MSc, CISSP, CCSK, COBIT, Prince2, ISO27001LA, ITIL 

https://www.linkedin.com/in/michaliskamprianis 

 

2 



Mobile application categories 
» Stand Alone 

• Picture gallery 
• Camera 
• Clock and alarm 
• Notes, Word processor 

» Client – Server  
• No significant user data  

- Transport schedules 

• With significant user data and interaction 
- Twitter 
- LinkedIn 
- Tinder 

 

3 



Mobile application security analogy 
» What does it mean to protect information in the mobile application? 

4 



Mobile app security + infrastructure 

» What does it mean to protect information always?  

5 



What are we talking about? 
» Security is as strong as your weakest link 
(1) You should ensure the mobile application is secure  
(2) If you store data in servers, you should protect the servers too  

• Hardening, Secure configuration, Patch and Vulnerability management 
• Access control, Least privilege, Segregation of duties 
• Logging, Monitoring 
• Encryption at rest,  

(3) And by the way, since you’re transferring the data from the 
application to the servers, protect it en route  
• Encryption in transit 

6 



An old trick 

» Encryption in transit usually means SSL 

• And more often than not, that is HTTPS 

» Known problem: man-in-the-middle attack 

» Known solution: Certificate pinning 

• OWASP has sample code for iOS and Android 

• No solution for Windows Phone  

 



Let’s make sure we do it right! 
» Own certificate authority or not? 

• I opt for own; generate the certificates and shut it down! 
• In 2001, Verisign issued fake MS certificates  
• In 2010 Verisign was hacked – no news about the CA 
• Vasco/DigiNotar got hacked in 2011 having issued hundreds of 

fraudulent certificates 
• KPN/Getronics got hacked in 2007, identified in 2011 
• Comodo’s reseller was hacked, 9 fraudulent certificates issued 
• None of the drawbacks of self-signed certificates is relevant in 

this case 



What else do we add? 
» Android – specific : How about client key pairs / certificates? 

• Have either the reverse proxy or plain web server “authenticate” the .apk 
• Use SSL Verify Depth wisely so that ONLY your CA’s certificates are accepted  
• Use Certificate Revocation Lists so that you can block access to a buggy version altogether 
• Issue different certificates per version / device type  

» Of course don’t forget to : 
• Remove any debugging code  
• Obfuscate the apk before release (proguard) 
• Construct passwords on the fly; use tokenization and runtime functions 
• Even better, construct passwords algorithmically from existing application strings 

» Important for client key pairs : use the appropriate KeyStore 
• Do not use JKS / BKS; this is only resistant to tampering 
• Use UBER; this is resistant to both tampering AND inspection 



Is this security by obscurity? 
» Obscurity does not (usually) provide security 

• But even if you’re specifically targeted, it adds to security 

• This “trick” adds to the setup, does nor replace something 

• If it gets broken, nothing changes in comparison to not having it at all 

» Similar cases  
• Do you change your SSH server port? 

• Do you use port-knocking? 

• Do you hide your servers’ version information from headers? 

• Do you remove software banners and  welcome texts? 



Do as Google says… 
» Do you use Google Play and In-App billing? 
» Google says: Protect your Google Play public key 

• To keep your public key safe from malicious users and 
hackers, do not embed it in any code as a literal string. 
Instead, construct the string at runtime from pieces or 
use bit manipulation (for example, XOR with some other 
string) to hide the actual key. The key itself is not secret 
information, but you do not want to make it easy for a 
hacker or malicious user to replace the public key with 
another key 

 



Raise the bar 
» There is no perfect security 

• But we should do our best, including delaying the attacker 

» If someone targets you, you’re in trouble 
• Big names are getting hacked every day 

» Make sure you’re not the easiest target 
• You avoid as much as possible amateurs / script kiddies 
• You buy yourself some time on the next 0-day vulnerability 

» Make intrusion difficult and time consuming 
• A cost benefit analysis should push the attacker away 

 



Remember that sometimes… 



Drawbacks 

» There is some inherent complexity  

• Complexity is bad for security 

• But you only do it once and the code is very simple 

» You may open yourself to new attack vectors 

• SSL – based (although you already have SSL) 

• Potential DOS due to client SSL authentication 

» Potential performance overhead 



Next steps 

» Wouldn’t it be nice 

• If that technique could be extended to generate 
user-bound certificates on registration? 

 



Get in touch 
Michalis Kamprianis 
 
» On LinkedIn:  
https://www.linkedin.com/in/michaliskamprianis 
 
» By email:  
michalis.kamprianis@gmail.com 
 
» On Twitter:  
@kamprianism 

 


